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1 Both graphs are symmetric in the lines  y =  x , and  x4 + y4 = u   is also symmetric in the x- and 

y-axes. These facts immediately enable us to write down the coordinates of B( , ), C(– , –)     
and D(–  , – ). Remember to keep the cyclic order A, B, C, D correct, else this could lead to 
silly calculational errors later on. The easiest way to show that ABCD is a rectangle is to work out 
the gradients of the four sides (which turn out to be either 1 or –1) and then note that each pair of 
adjacent sides is perpendicular using the “product of gradients = –1” result. Working with 
distances is also a possible solution-approach but, on its own, only establishes that the 
quadrilateral is a parallelogram. However, the next part requires you to calculate distances 

anyhow, and we find that CB, DA have length ( + ) 2  while BA, DC are of length ( – ) 2 . 
Multiplying these then give the area of ABCD as 2(2 – 2).     

   
All of this is very straightforward, and the only tricky bit of work comes next. It is important to 
think of  and  as particular values of x and y satisfying each of the two original equations. It is 

then clear that (2 – 2)2 = 4 + 4 – 2(2 2) = u – 2v2, so that  Area ABCD = 2 22vu  . 

Substituting   u = 81, v = 4  into this formula then gives  Area = 2 16281   = 14, which is 
intended principally as a means of checking that your answer is correct.             

               
2(i)    It is perfectly possible to differentiate  a^(sin[ ex])  by using the Chain Rule (on a function of a   
 function of a function) but simplest to take logs. and use implicit differentiation. Then, setting  

 
x

y

d

d
= 0  and noting that   ex  and  ln a  are non-zero, we are left solving the eqn.  cos( ex) = 0  for 

 the turning points. This gives ex = (2n + 1) 2
1     x = ln  2

1n ,  y = a or a
1 , depending upon 

 whether n is even or odd. Although  not actually required at this point, it may be helpful to note 
 at this stage that the  evens give maxima while the odds  give minima. There is, however, a 
 much more obvious approach to finding the TPs that doesn’t require  differentiation at all, 
 and that is to use what should be well-known properties of the sine function:  namely, that  
 )exp.sin( xay    has maxima when  sin( ex) = 1,  i.e.  ex = (2n + 2

1 ) ,  and  x = ln(2n + 2
1 )   for   

 n = 0, 1, … , with  ymax = a . Similarly, minima occur  when  sin( ex) = –1, i.e.   ex = (2n – 2
1 ) , 

 and  x = ln(2n – 2
1 )  for  n = 1, 2, …  , with  ymin = a

1 . 

 
(ii) Using the addition formula for sin(A + B), and the approximations given, we have  

sin( ex)  sin( +  x) = – sin( x)  –  x  for small x,  
 leading to  y  axx ea ln       1 –  x. ln a . 
 
(iii)  Firstly, we can note that, for x < 0, the curve has an asymptote  y = 1 (as  x  – ,  y  1+) . 
 Next, for x > 0, the curve oscillates between  a  and  a

1 , with the peaks and troughs getting ever 

 closer together . The work in (i) helps us identify the TPs: the first max. occurs when n = 0 at a 
 negative value of x [N.B. ln  2

1  < 0] at  y = a; while the result in (ii) tells us that the curve is 

 approximately negative linear as it crosses the y-axis.         
 
(iv) The final part provides the only really tricky part to the question , and a quick  

 diagram might be immensely useful here. Noting the relevant x-coordinates      
x1 =  2

32ln k , x2 =  2
12ln k , and  x3 =  2

12ln k , 

 the area is the sum of two trapezia (or rectangle – triangle) , and manipulating  
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  leads to the final, given answer. 
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3 Using the “addition” formula for  tan(A – B),  

 LHS   
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 (since  c2 + s2 = 1)  
x
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  sec x – tan x  RHS. 

 Alternatively, one could use the “t = tan( 2
1 -angle)”  formulae to show that 

 RHS  
2

2

1

1

t

t




21

2

t

t




)1)(1(

)1( 2

tt

t





t

t





1

1
 

2

2

tan1

tan1
x

x




 LHS. 

 

(i) Setting   x = 4
  in (*)  tan 128  . Then, using the addition formula for tan(A + B) with   

 A = 3
  and B = 8

 , we have  8324
11 tantan    =  1231

123




 = 
163

123




, as required. 

 
(ii) Now, in the “spirit” of maths, one might reasonably expect that one should take the given 
 expression, rationalise the denominator (twice) and derive the given answer, along the lines … 

13

13

13

3221

631
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123
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123


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
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
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

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= 6322  . 

 However, with a given answer, it is perfectly legitimate merely to multiply across and verify that 

         1236322163  . 
 
(iii)  Having got this far, the end is really very clearly signposted. Setting  x = 24

11  in (*)  gives 

   tan tt  2
24

11
24

11
48 1tansec   

          1821226264342463241   –  6322   

          = 663821015   –  6322   
               
4(i) Writing   p(x) – 1  q(x).(x – 1)5,  where  q(x)  is a quartic polynomial, immediately gives p(1) = 1. 
  
(ii) Diffg. using the product and chain rules leads to 
  p(x)  q(x).5(x – 1)4 + q(x).(x – 1)5  (x – 1)4.{5 q(x) + (x – 1) q(x)},   
 so that  p(x)  is divisible by  (x – 1)4  .      
 
(iii)  Similarly, we have that  p(x)  is divisible by  (x + 1)4  and  p(– 1) = – 1 .   
 Thus  p(x)  is divisible by  (x + 1)4.(x – 1)4  (x2 – 1)4 . However,  p(x)  is a polynomial of degree 
 eight, hence  p(x)  k(x2 – 1)4  for some constant k . That is,  p(x)  k  1464 2468  xxxx  .

 Integrating term by term then gives  p(x)  k  xxxxx  3
3
45

5
67

7
49

9
1  + C, and use of  both       

 p(1) = 1 and  p(– 1) = – 1  help to find k and C; namely,  k = 
128

315
 and  C = 0.    
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5 The very first bit is not just a giveaway mark, but rather a helpful indicator of the kind of result or 

 technique that may be used in this question:   1211
2

 xxx ; but pay attention to what 

 happens here. Most particularly, the fact that   1211
2

 xxx  does NOT necessarily 

 mean that 1112  xxx   since positive numbers have two square-roots! Recall that  

 xx 2   and not just x. Notice that, during the course of this question, the range of values under 

 consideration switches from (5, 10) to  10 ,4
5 , and one doesn’t need to be particularly suspicious 

 to wonder why this is so. A modicum of investigation at the outset seems warranted here, as to 
 when things change sign. 
 

(i)  So … while 1112  xxx   seems a perfectly acceptable thing to write, since  x  1  is 
 a necessary condition in order to be able to take square-roots at all here (for real numbers), simply 

 writing down that   1112  xxx   may cause a problem. A tiny amount of 

 exploration shows that 11 x   changes from negative to positive around x = 2. Hence, in part 

 (i), we can ignore any negative considerations and plough ahead: I = 
10

5

2dx =  
5

102x  = 10.    

 
(ii)   Here in (ii), however, you should realise that the area requested is the sum of two portions, one of 
 which lies below the x-axis, and would thus contribute negatively to the total if you failed to take 
 this into account. Thus, 

  Area =  
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2 1212  xxxx  = 4¼ .          

 

(iii)  Now   12211
2

 xxx   x  0  so we have no cause for concern here. Then 
 

  I = 
 

10

25.1 11

1111

x xx

xx
dx =  
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10

25.1

2
1

2
1

)1()1(
x
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          =  
25.1

101212  xx  = 2  111     

               
6 If you don’t know about the Fibonacci Numbers by now, then … shame on you! Nevertheless, the 
 first couple of marks for writing down the next few terms must count as among the easiest on the 
 paper. (F1 = 1, F2 = 1), F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34 and F10 = 55.  
 
(i)  If you’re careful, the next section isn’t particularly difficult either. Using the recurrence relation 

 gives 
121  2

111







iiii FFFF

 since  Fi – 2 < Fi – 1 for  i  4. Splitting off the first few terms then  

 leads to  S = 


n

i iF1  

1
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
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




  .....

4

1

2

1
1

111

321 FFF
, where the 

 long bracket at the end is the sum-to-infinity of a GP. These give, respectively, S > 1 + 1 × 2 = 3  
 or   1 + 1 + 22

1   = 3. A simpler approach could involve nothing more complicated than adding 

 the terms until a sum greater than 3 is reached, which happens when you reach F5. 
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 A similar approach yields  

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  for  i  3  and splitting off the first few terms, this time 

 separating the odd- and even-numbered terms, gives 
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(ii)  To show that  S > 3.2, we simply apply the same approaches as before, but taking more terms 
 initially before summing our GP (or stopping at F7 in the “simpler approach” mentioned 
 previously). Something like 

  S > 

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6   

 does the job pretty readily. Then, to show that  S < 2
13 , a similar argument to those you have been 

 directed towards by the question, works well with little extra thought required: 
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 Returning to the initial argument,  Fi  < 2 Fi – 1  or  




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 for  i  4, we can extend this to 
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 for  i  6,  etc., simply 

 by using the defining recurrence relation for the Fibonacci Numbers, leading to the general results  
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 and                   
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 Since the terms  
1n

n

F

F

2

15 
 , the golden ratio, (being the positive root of the quadratic 

 equation  x2 = x + 1,  we can deduce the approximation  S  2

1  1
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i i FF
  since the geometric 

 progression  2

112 11

1
...
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1 




 







  . Taking  n = 9, (i.e. just using the first 10 

 Fibonacci Numbers which you were led to write down at the start), 

S  2

10

9

1

11 
FFi i




= 
2

35

55

1

185640

614893 
   3.359 89,  

 which is correct to 5 d.p. For further information on this number, try looking up the ‘Reciprocal 
 Fibonacci constant’ on Wikipedia, for instance. 
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7 It is easy to saunter into this question’s opening without pausing momentarily to wonder if one is 
 going about it in the best way. Whilst many can cope with differentiating a “triple”-product with 
 ease, many others can’t. However, even for interests’ sake, one might stop to consider a general 
 approach to such matters. Differentiating  y = pqr  (all implicitly functions of x) as, initially, p(qr) 

 and applying the product-rule twice, one obtains  y = pq r + p q r + p qr, and this can be used 

 here with  p = (x – a)n,  q = ebx  and  r = 21 x  without the need for a lot of the mess (and 

 subsequent mistakes) that was (were) made by so many candidates. Here,  y = (x – a)n ebx 21 x   
 gives 

x

y

d

d
 = (x – a)n ebx

21 x

x


 + (x – a)n b ebx 21 x  + n(x – a)n – 1  ebx 21 x  

 Factorising out the given terms    )1()1)(()(
1

e )( 22

2

1  

xnxaxbaxx
x

ax bxn




 

 , and we 

 are only required to note that the term in the brackets is, indeed, a cubic; though it may prove 
 helpful later on to simplify it by multiplying out and collecting up terms,  to get   

q(x) = bx3 + (n +1 – ab)x2 + (b – a)x + (n – ab). 
 

(i)   The first integral, I1 =   



14

1

e )4( 3

2

414

x
x

x x

 dx , might reasonably be expected to be a very 

 straightforward application of the general result, and so it proves to be. With n = 15, and taking    
 a = b = 4, so that  q(x) = 4x3 – 1  (which really should be checked explicitly), we find     

I1 = (x – 4)15 e4x 21 x  (+ C). 
 

 (ii)  This second integral,  I2 =   



1112

1

e )1( 24

2

1221

xx
x

x x

 dx , is clearly not so straightforward, 

 since the bracketed term is now quartic. Of the many things one might try, however, surely the 
 simplest is to try to factor out a linear term, the obvious candidate being (x – 1). 
 

 Finding that  12x4 – x2 – 11  (x – 1)(12x3 + 12x2 + 11x + 11), we now try  n = 23, a = 1, b = 12   

 to obtain  q(x) = 12x3 + 12x2 + 11x + 11  and  I2 = (x – 1)23 e12x 21 x  (+ C).  
 

(iii)  The final integral,  I3 =   



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xx
x

x x

 dx, is clearly intended to be even less simple 

 than its predecessor. However, you might now suspect that “the next case up” is in there 
 somewhere. So, if you try  n = 8, a = 2, b = 4, which gives   
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 as well as the obvious target  n = 7, a = 2, b = 4, which yields    

x
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 It may now be clear that both are involved. Indeed,   

I3 =  





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d
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d

d 78 dx = y8 + 2 y7 = x(x – 2)7 e4x 21 x  (+ C).   
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8 For the diagram, you are simply required to show P on AB, strictly between A and B; and Q on AC 
 on other side of A to C. The two given parameters indicate that  CQ =  AC  and  BP =  AB .  
 Substituting these into the given expression, CQ  BP = AB  AC    AC . AB = AB . AC    

  


 1
 . [Notice that CQ, BP, etc., are scalar quantities, and hence the  “” cannot be the 

 vector product!]           
  
 Writing the equation of line PQ in the form  r = t p + (1 – t) q  for some scalar parameter t and 
 substituting the given forms for p and q gives  r = t a + t(1 – )b + (1 – t) a + (1 – t)(1– )c. 

 Eliminating 


 1
   r = cba 



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 


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 



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 1

)1()1(
1

tt
t

t . Comparing this to the 

 given answer, we note that when  



1

1
t  from the b-component,  

1
1






t , etc.,  so that we 

 do indeed get r = cba  , as required. 
 
 Since  d – c = b – a , one pair of sides of opposite sides of ABDC are equal and parallel, so we can 
 conclude that ABDC is a parallelogram 
               
9 (i) If you “break the lamina up” into a rectangle and a triangle (shapes whose geometric centres 
 should be well-known to you), with relative masses 2 and 1, and impose (mentally, at least) a 
 coordinate system onto the diagram, then the x-coordinate of the centre of mass is given by 




i

ii

m

xm
x = 

3

1212 2
9 

 = 7. 

 
(ii)   A more detailed approach, but still along similar lines, might be constructed in the following, 
 tabular way: 
 

 Shape     Mass    Dist.  c.o.m. from OZ 
 LH end 540     7    Note that each mass has been 
 RH end 540     7    calculated as  
 Front   41d    2

27        area  density () 

 Back  40d     0   
 Base   9d    2

9    
 

 Then  xE  = 



d

dpd

901080

90417)540(2 2
9

2
27




, which (after much cancelling) simplifies to 

      = 
)12(10

667602

d

d




= 
)12(5

)11140(3

d

d




.  

 
 A similar approach for the full tank gives 
 

   Object      Mass     Dist.  c.o.m. from OZ 
   Tank   2880       4

27  

   Water            10800k     7   
 
 

 and  xF  = 



k

kp

108002880

7108002880 4
27




= 
k

k

154

10527




. 
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10 The standard approach in collision questions is to write down the equations gained when applying 
 the principles of Conservation of Linear Momentum (CLM) and Newton’s Experimental Law of 
 Restitution (NEL or NLR), and then what can be deduced from these. 
 
 For P1, 2 : CLM  m1 u = m1 v1 + m2 v2   and   NEL  eu = v2 – v1.  
 Solving to determine the final speeds of P1 and P2 then yields  

  v1 = u
mm

emm

21

21 )(




 and   v2 = u
mm

em

21

1 )1(




.     

 Similarly, for P4, 3 : CLM  m4 u = m4 v4 + m3 v3   and   NEL  eu = v3 – v4,  leading to 

v3 = u
mm

em

43

4 )1(




 and  v4 = u
mm

emm

43

34 )(




. 

 
 If we now write  X = OP2  and  Y = OP3  initially, and equate the times to the following collisions 
 at O, we have 

 (1st collision): 
   

uem

Ymm

uem

Xmm

)1()1( 4

43

1

21








   

 and 

 (2nd collision): 
 
 

 
 uemm

Ymm

uemm

Xmm

34

43

21

21








. 

 Cancelling  u’s and (1 + e)’s   

 
   

4

43

1

21

m

Ymm

m

Xmm 



   and  

 
 

 
 34

43

21

21

emm

Ymm

emm

Xmm








.     (*) 

 

 Dividing these two (or equating for X / Y)  
4

34

1

21

m

emm

m

emm 



, which simplifies to

 
4

3

1

2

m

m

m

m
 . Finally substituting back into one of the equations (*) then gives 




















4

3

1

2 11
m

m
Y

m

m
X     X = Y . 

 
 
 Rather surprisingly, however, the momentum equations turn out to be totally unnecessary here. 
 Consider … 
 

  Collision P1, 2 : NEL  eu = v2 – v1 
 

  Collision P4, 3 : NEL  eu = v3 – v4 so that  v2 – v1 = v3 – v4  (*). 
 

 Next, the two equated sets of times are 
32 v

Y

v

X
  and   

41 v

Y

v

X
  X v3 = Y v2  and   X v4 = Y v1 . 

 Subtracting:     1243 vvYvvX    X = Y  from (*).   
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11 N2L  FT  – (n + 1)R = (n + 1)Ma , where  FT  is the tractive, or driving, force of the engine. 

 Using  P = FT  . v   then gives  a = 
)1(

)1(





nM

Rn
v

P

  or  
vnM

RvnP

)1(

)1(




 . Note here that, for  a > 0   

 we require  P > (n + 1)Rv. 
 

 Writing  a = 
t

v

d

d
 gives  

t

v

d

d
 = 

vnM

RvnP

)1(

)1(




 which is a “variables separable” first-order 

 differential equation: 
RvnP

vnM

)1(

)1(




 dv = dt    
V

RvnP

vnM

0 )1(

)1(
 dv = t

T

d.1
0
    ( = T ). 

 Some care is needed to integrate the LHS here, and the simplest approach is to use a substitution 
 such as   s = P – (n + 1)Rv,  ds = – R(n + 1) dv  to get   

  T = 
)1(

d





 nR

s

s

sP

R

M
=  






 




1
)1( 2 s

P

Rn

M
 ds  =   ssP

Rn

M





ln
)1( 2

   

     =     
0

)1()1(ln
)1( 2

VRvnPRvnPP
Rn

M





  

     =   0ln)1()1(ln
)1( 2





PPPRvnPRvnP
Rn

MP
     

     = 
R

MV

P

RvnP

Rn

MP







 


 )1(

ln
)1( 2

   

 More careful algebra is still required to manipulate this into a form in which the given 
 approximation can be used: 

  T = 
R

MV

P

Rvn

Rn

MP







 



 )1(

1ln
)1( 2

  

      
R

MV

P

Rvn

P

Rvn

Rn

MP

















 








.....
)1(

2

1)1(

)1(

2

2
  

     = 
R

MV

P

MVn

R

MV



 .....

2

)1( 2

   
 

so that  PT   2
2
1 )1( MVn  , and this is just the statement of the Work-Energy Principle, namely 

 “Work  Done = Change in (Kinetic) Energy”, in the case when  R = 0.    
   
 When  R  0,  WD against R = WD by engine – Gain in KE    (n + 1)RX = PT – 2

2
1 )1( MVn  . 

 [Unfortunately, a last-minute change to the wording of the question led to the omission of one of    
   the (n + 1)s.]  
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12 (i) This whole question is something of a “one-trick” game, I’m afraid, and relies heavily on being   
 able to spot that X is just half of a normal distribution. The Standard Normal Distribution N(0, 1) 

 is given by  P(X    x) = 



x

t2 
2
1

e
2

1


dt. Once the connection has been spotted, the accompanying 

 pure maths work is fairly simple, including the sketch of the graph.  This is particularly important 

 since the function  
2

ekx  cannot be integrated analytically. 
         

(ii)  Substituting  t = 2x , dt = 2 dx   and equating to 
2

1
 (being just the positive half of a normal), gives 






0

2 
2
1

e
2

1 t


dt = 




0

2 22e
2

1 x


dx = 

2

1
  

4

2
de

0

2 2 



 xx . 

 Since total probability = 1, we have   
4

21 


k
  and  k = 

2

4
. 

 

(iii)  Thereafter,  E(X) = k xx x de
0

2 2


   = k 
0

2 2e
4

1 





  x  = 

2

1

4

1
k . 

 Also,  E(X 2) = k xxx x de 
0

2 2


 = k
















 







xx xx de 
4

1
e

4

1

00

2 2 22  using integration by parts 

          = k









4

2

4

1
0


 = 

4

1
. 

 Then   Var(X) = E(X 2) – E2(X) = 
2

1

4

1
   or  




4

2
.  

 

(iv)  For the median, we want to find the value m of x for which  
2

1
 = x

m
x de

2

4

0

2 2 


,  and this 

 requires to undo some of the above work in order to be able to use N(0, 1) and the statistics tables 
 provided in the formula book. 

 
2

1
x

m
x d2e

2

2

0

2 2 


= t
m

t
de

2

1
2

2

0

2 
2
1





 =   2

122  m   or   
4

3
2
1  m    

 Use of the  N(0, 1) tables then gives  m2 0.6745  (0.675-ish)  and  m = 0.337 or 0.338 . 
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13 For A:  p(launch fails) = p(>1 fail) = 1 – p0 – p1 = 1 – q4 – 4q3p  
 

   so that  E(repair) = x p(x) = 0.q4 + K.4q3p + 4K(1 – q4 – 4q3p)   
 

                                   = 4K  pqqqqqpq 3323 4)1)(1(    
 

             = 4Kp  32 21 qqq     
 

 For B:  p(launch fails)  = p(>2 fail) = 1 – p0 – p1 – p2 = 1 – q6 – 6q5p – 15q4p2   
 

   so that  E(repair) = x p(x)  
 

        = 0.q6 + K.6q5p + 2K.15q4p2 + 6K(1 – q6 – 6q5p – 15q4p2)     
 

        = 6K  2455432245 156)1)(1(5 pqpqqqqqqqpqpq    
 

  Extracting the p and obtaining the remaining in terms of q only, 
 

                   = 6Kp  )1(1561)1(5 45543245 qqqqqqqqqqq    
 

        = 6Kp  5432 691 qqqqq      
 
 Setting  Rep(A) = 3

2 Rep(B)    12Kp  32 21 qqq   = 2Kp  5432 691 qqqqq     
 

 Clearly,  p = 0 is one solution and the rest  simplifies to   
 

0 = 3q3(1 – 3q + 2q2) = 3q3(1 – q)(1 – 2q). 
 

 We thus have   p = 1, 0, 2
1 , with the 0 and 1 being rather trivial solutions.   
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